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Genome–nuclear lamina interactions and gene regulation
Jop Kind and Bas van Steensel
The nuclear lamina, a filamentous protein network that coats

the inner nuclear membrane, has long been thought to interact

with specific genomic loci and regulate their expression.

Molecular mapping studies have now identified large genomic

domains that are in contact with the lamina. Genes in these

domains are typically repressed, and artificial tethering

experiments indicate that the lamina can actively contribute to

this repression. Furthermore, the lamina indirectly controls

gene expression in the nuclear interior by sequestration of

certain transcription factors. A variety of DNA-binding and

chromatin proteins may anchor specific loci to the lamina, while

histone-modifying enzymes partly mediate the local repressive

effect of the lamina. Experimental tools are now available to

begin to unravel the underlying molecular mechanisms.
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Introduction
The cell nucleus is enclosed by a double lipid bi-layer

with interspersed nuclear pore complexes (NPCs) that

facilitate selective nuclear-cytoplasmic exchange of

macromolecules. In metazoans, the nucleoplasmic sur-

face of the inner nuclear membrane (INM) is structurally

supported by the nuclear lamina (NL), a filamentous

meshwork consisting of specialized intermediate filament

proteins named lamins. There are two types of lamins: B-

type lamins are found in all cell types, whereas the A-type

lamins are found only in differentiated cells [1,2]. Lamins

interact with many other proteins, some of which are

integral components of the INM [1,3]. A wide spectrum

of human disorders has been linked to mutations in

lamins or lamin-interacting proteins [4], illustrating the

importance of the NL.

For decades it has been thought that the NL may act as a

surface for the anchoring of specific DNA sequences,
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thereby providing a scaffold for the folding of chromo-

somes inside the nucleus. In addition, the NL may play

an active role in the regulation of gene expression. Recent

microscopy studies, gene-tethering approaches and the

mapping of genome–NL interactions at molecular resol-

ution have yielded new insights into these processes. In

this review we discuss the possible roles of the NL in

chromosome organization and transcriptional regulation,

with emphasis on new data reported over the past two

years.

The genome in association with the NL and
the NPC
Classic electron micrographs [5] and recent high-resol-

ution light microscopy images of mammalian cell nuclei

[6�] show that the NL tends to be in close contact with

relatively compact chromatin, while NPCs are sur-

rounded by much less, or decondensed, chromatin. Gen-

ome-wide mapping using the DamID technology has

identified the regions of the genome that are in molecular

contact with the NL in both human and fly cells [7,8�].
Human fibroblasts have more than 1300 of such genomic

contact regions, which are named Lamina-associated

domains (LADs). Human LADs are remarkably large

genomic segments (0.1–10 Mb) and together harbor thou-

sands of genes at a low gene-density. The vast majority of

those genes have very low expression levels with only few

active ‘escaper’ genes. Most LADs have sharp borders

that are often marked by specific sequence elements,

such as binding sites for the insulator protein CTCF [8�].

Recent data indicate that NPCs in metazoans also interact

with specific genomic loci, as was previously found for

budding yeast [9]. Molecular mapping studies have ident-

ified hundreds of sites in the Drosophila genome that are

bound by NPC proteins [10–12]. In contrast to LADs,

genes in association with NPCs are generally found active

[9,10], or at least moderately transcribed [11]. Interest-

ingly, a substantial pool of nuclear pore proteins freely

diffuses and binds to genes located in the nuclear interior

[11,12]. By a clever strategy with engineered NPC

proteins, Kalverda et al. [11] managed to generate gen-

ome-wide maps that discriminate intranuclear inter-

actions from NPC interactions at the nuclear periphery.

This revealed that bona fide NPC-associated sequences

are distinct from NL-associated regions, and primarily

overlap with moderately active genes.

The molecular interaction maps for NL and NPC

proteins offer an explanation for the sometimes confusing

observations obtained by Fluorescence In Situ Hybrid-

ization (FISH) microscopy when correlating the nuclear
www.sciencedirect.com
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Figure 1

Cartoon model of genome–NL interactions in mammalian cells. NL-associated chromatin is mostly transcriptionally inactive and partially marked by

specific histone modifications such as H3K9me2 and H3K27me3, while histone acetylation (H3/H4ac) and other ‘active’ modifications are depleted.

LAD borders are demarcated by CTCF and possibly other specific proteins. NPCs form a microenvironment that is distinct from the NL. The LEM-

domain is a protein domain shared by several transmembrane proteins of the INM. For simplicity, this cartoon leaves out much of the chromatin in the

nuclear interior. Not all known NL-associated proteins are shown, and the cartoon is not to scale (LADs are typically larger than 100 kb). ONM, outer

nuclear membrane.
radial position of genes to their expression status [13,14].

The molecular mapping results emphasize that NL and

NPCs represent different microenvironments (Figure 1),

which are difficult to resolve by conventional light micro-

scopy. The possibility of NL ‘microdomains’ composed

of different lamin subtypes [15] further emphasizes that

the nuclear periphery is a heterogeneous structure.

Whether interacting with the NL or NPCs, loci that

associate with the nuclear periphery typically do so in a

stochastic manner. Even in a homogeneous cell popu-

lation, the frequency of association is never found to be

100% [7,8�,11,14]. Partly, this may be attributed to intra-

nuclear mobility of the chromatin fiber [16], and to some

extent the folding of interphase chromosomes may have a

stochastic component.

In addition, the organization of genes and chromosomes in

the nucleus is dependent on the differentiation state of the

cell. An extreme example of this are nuclei of rod cells in

the retina of nocturnal animals. Here, the organization of

chromatin is radially inverted, such that heterochromatin

aggregates in the center of the nucleus and active euchro-

matin is located at the periphery. These inverted nuclei act

as light-collecting lenses, thus enhancing the light sensi-

tivity of rod cells [17��]. This fascinating anecdote illus-

trates the remarkable plasticity of nuclear architecture.
www.sciencedirect.com
Mechanisms of genome–NL interactions
Do LADs adhere to the NL owing to specific biochemical

interactions, or are they passively pushed towards the

periphery because other chromosomal regions have a

preference to be located in the nuclear interior? Interest-

ing new computer simulations of chromosome polymer

dynamics suggest that local differences in certain basic

physical properties of the chromatin fiber, such as flexi-

bility and thickness, may partly drive the peripheral

location of heterochromatin by self-organization prin-

ciples [18,19]. Yet, the NL does appear to play an active

role in the nuclear organization of the genome by binding

specific chromosomal regions. Indirect evidence comes

from the observation that compacted chromatin is only

touching the NL but not the neighboring NPCs [5,6�].
Passive brushing of chromatin against the NL is also

difficult to reconcile with the sharply defined LAD

structure and the presence of border elements that

demarcate LADs [8�]. Furthermore, cells that lack Lamin

B1 show abnormal positioning of some chromosomes

[15,20], while cells from patients with a rare Lamin A

mutation (causing Hutchinson Gilford Progeria Syn-

drome) have substantially reduced amounts of hetero-

chromatin as judged from electron microscope images

[21]. It is therefore likely that specific biochemical inter-

actions between the NL and LADs help to organize

chromosomes inside the nucleus.
Current Opinion in Cell Biology 2010, 22:320–325
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1 This study reports, in analogy to mammalian laminopathies, that the

expression of a N-terminal truncated form of Lamin A, causes muscle-

defects in flies. Furthermore, the authors convincingly show, in an NL-

targeting assay, that Lamin A is involved in gene-repression.
A key question is how the NL interacts with specific

genomic regions. Several DNA-binding factors physically

interact with NL proteins [1,3,22] and are therefore good

candidates to mediate specific genome–NL interactions.

A notable candidate is the transcription factor Oct1, which

binds to Lamin B1 and is present at the NL in a Lamin

B1-dependent manner [23]. Oct1 recognition motifs are

enriched within LAD sequences [8�], suggesting that

Oct1 may help to tether LADs to the NL. Sequence-

specific NL interactions are also illustrated by the recent

identification of an 80 bp repeat sequence within a human

subtelomeric region that is sufficient to localize an adja-

cent telomere to the NL in a CTCF and lamin A de-

pendent fashion [24]. It is likely that additional sequence

elements will be discovered that can be anchored to the

NL via DNA-binding factors.

Besides ‘hard-coded’ sequence elements, local chromatin

properties may also provide recognition sites for the NL.

Lamins and INM proteins interact biochemically with

histones and various chromatin proteins [1,3]. The

histone modifications H3K9me2 and H3K27me3 in mam-

mals are enriched at the nuclear periphery [14,25�] and

are over-represented in LADs [8�,26]. However, micro-

scopy studies of individual loci have so far not yielded

direct evidence that these histone marks mediate NL

interactions [25�,27], although more extensive investi-

gation on this issue is needed. It is worth considering

that the absence of activating histone marks (such as

methylation of H3K4 and acetylation of several other

histone lysines) may serve as a recognition cue for NL

interactions. This notion is supported by the observation

that treatment with trichostatin A, an inhibitor of histone

deacetylases (HDACs), disrupts NL interactions gen-

ome-wide in Drosophila cells [7], and also dissociates

some mammalian genes from the nuclear periphery [28].

Rebuilding genome–NL interactions after
mitosis
During mitosis, phosphorylation of NPC-components

and NL-components initiates the disassembly of the

nucleus [29,30] and results into the dissociation of

INM proteins and lamins from chromatin [31]. As cells

need to progress through cell division for de novo NL–
genome interaction to occur, the nuclear architecture is

probably established during nuclear reassembly

[32��,33��]. The molecular basis for the reassembly of

the nuclear envelope at the end of mitosis is not under-

stood in great detail, but a number of recent papers

provide valuable insight in the order of events. At the

onset of nuclear reassembly, BAF binds first to the

telophase chromosomes at a distinct ‘core-structure’ fol-

lowed by Lap2a and many – but not all – NL-associated

proteins [34,35�]. Lamins bind to telophase chromosomes

only after the core region is assembled. Lamin A binds to

the core region, while Lamin B first localizes to the

spindle pole to gradually associate with chromatin in a
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rather diffuse pattern [34,35�]. The core region itself stays

devoid of the nuclear membrane until all NL-associated

components have been docked to this structure [35�].
Many NL-associated proteins collectively contribute to

reassembly of the nuclear envelope, as reducing the levels

of individual components significantly slows down

nuclear reassembly [36].

The recognition basis for the distribution of these com-

ponents to telophase chromosomes is unknown, although

non-specific DNA binding by NL-associated proteins

appears to play a role [37]. It is unlikely that BAF

recognizes the core-structure through sequence-specific

DNA binding, as BAF binds to dsDNA in a sequence-

independent manner [38]. Instead, BAF and other NL-

associated components could be directed to the telophase

chromosomes via interactions with distinct chromatin

proteins. Given the rough similarities of the core region

and interphase LADs (i.e., presence of NL-associated

proteins and absence of most NPC components), it is

tempting to speculate that the chromosomal regions in

the telophase core region correspond to some LADs in

interphase.

Gene regulation by the NL
Does the NL play an active role in gene regulation, or is it

merely an innocent bystander? Microarray and in situ
expression analyses have shown that the depletion of

lamins and other NL proteins causes misregulation of

hundreds of genes [20,23,39–41], as does expression of a

lamin A mutant that causes premature aging in humans

[42]. In Drosophila, the knockdown of the only B-type

lamin causes derepression of a testis-specific gene cluster,

together with the relocalization of this cluster towards the

nuclear interior [43], strongly suggesting that the genes in

this cluster are repressed via direct contact with the NL.

To investigate the impact of gene–NL interactions on

transcription more directly, a number of laboratories have

artificially tethered reporter genes (integrated in the

genome) to the NL. While in two studies this resulted

into partial repression of the reporter and some of the

surrounding genes [33��,44��] virtually no effect on repor-

ter expression was found in a third study [32��]. However,

a similar set of tethering experiments in Drosophila by the

Wallrath laboratory showed strong repression of one

reporter gene in three different genomic integration sites,

while a second reporter positioned in tandem was only

repressed in two of the three integration sites (George

Dialynas, Sean Speese, Vivian Budnik, Pamela K. Geyer

and Lori L. Wallrath, personal communication1, paper of

special interest). Together, these studies indicate that
www.sciencedirect.com
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contact with the NL can contribute to gene silencing, yet

the magnitude of the repressive effect depends on local

chromatin context and regulatory sequences.

Interestingly, treatment with an HDAC inhibitor reverses

the repression caused by NL-tethering [44��]. Histone

deacetylation is therefore a likely contributor to gene

repression at the NL. Consistently, histones in chromatin

near the NL are normally hypo-acetylated [45], indicative

of high local HDAC activity. Indeed, several NL-com-

ponents interact with HDACs, including Lap2b and

Emerin [46,47]. An attractive model, therefore is that

the NL helps to repress genes in LADs partly by deace-

tylation of histones (Figure 2a).
Figure 2

Models of regulatory interactions of the NL with chromatin and DNA-binding p

modifying enzymes. G9a and HDACs interact with NL proteins [46–48] and

chromatin that is in close proximity, thus helping to repress gene activity ne

H3K27me3. (b) Hypothetical dual function of Oct1–NL interactions. Oct1 may

to its binding motifs that are enriched in LAD sequences (left); at the same ti

binding motifs at genes located in the nuclear interior (right) [23].
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A second histone modification that appears to be involved

in gene regulation at the NL is H3K9me2. In human cells

this modification was found to be enriched at the nuclear

periphery [25�] possibly mediated by an interaction of

BAF with G9a, the histone methyltransferase that is

primarily responsible for dimethylation of H3K9 [48].

Chromatin immunoprecipitation data show that

H3K9me2 occupies long stretches of the genome that

substantially overlap with LADs [8�,26]. Knockout of G9a

causes derepression of many late-replicating genes that

tend to be positioned at the NL [25�]. Within the resol-

ution of light microscopy, loss of G9a does not cause a

significant relocation of the affected genes, suggesting that

H3K9me2 is not required for genome–NL interactions, but
roteins. (a) Putative links between NL-associated chromatin and histone-

may thereby locally dimethylate H3K9 and deacetylate histones in

ar the NL. PRC2, Polycomb Repressive Complex 2, which methylates

anchor some LADs to the NL by binding simultaneously to Lamin B1 and

me, sequestering of Oct1 at the NL may prevent Oct1 from binding to its

Current Opinion in Cell Biology 2010, 22:320–325
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rather is needed for the repressive environment at the NL

(Figure 2a).

The NL also contributes to gene regulation in indirect

ways. For example, Oct1 can be sequestered away from

its target genes by an interaction with Lamin B1. A

number of genes involved in the oxidative stress response

appear to be regulated through this mechanism. Both

Oct1 and Lamin B1 null cells, show increased suscepti-

bility to oxidative stress, which is probably due to the

down-regulation of genes involved in this response [23].

Similar mechanisms involving sequestering by the NL

have been reported for other transcription factors [22].

Note that Oct1 may have a dual partnership with the NL:

on the one hand it may help to tether certain LADs to the

NL, while at the same time the sequestration of Oct1 at

the NL affects the expression of Oct1 target genes in the

nuclear interior (Figure 2b).

Conclusions
The availability of new tools, such as molecular tethering

methods, genome-wide mapping techniques, and subdif-

fraction light microscopy, has created exciting new oppor-

tunities to dissect the causal relationships among

genome–NL interactions, interphase chromosome fold-

ing, and gene regulation in mammalian cells. A picture

emerges in which the NL contributes to the spatial

organization of the genome and helps to repress genes

that are in close proximity. DNA-binding factors as well

as chromatin components help to anchor LADs to the

NL, and conversely the NL contributes to gene regula-

tion by modulating chromatin and the activity of tran-

scription factors.
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