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ABSTRACT

The propagation of mountain waves in an atmosphere with a fluctuating parameter of
stability is studied. Two cases are considered, the Gaussian, and a discontinuous Markov
chain, corresponding to a dry and a wet atmosphere, respectively.

(1)

1. Introduction

The use of simple mathematical models in
dynamic meteorology has given some results in
the study of the general circulation (barotropic
planetary waves) and mountain waves.

Barotropic waves are related to the problem
of forecasting long-term changes in the weather
and the problem of elaborating a physico­
mathematical description of the general circu­
lation. The numerical experiments differ from
each other more with respect to the manner of
taking into account energy dissipation due to
horizontal and vertical turbulent exchange.
Turbulent exchange is usually taken into ac­
count by the introduction of a "fictitious vis­
cosity" and as BIinova (1965) has pointed out,
this only leads to an attenuation of the process,
that is to a climate.

Barrier mountain waves are important in the
study of the so-called "middle scale" perturba­
tions in particular cyclones. In most models
turbulent exchange is completely neglected and
humidity and phase changes are not taken into
consideration. In what follows we will discuss
the propagation of mountain waves in an atmos­
phere with an index of refraction which suffers
small changes depending upon temperature and
humidity conditions. These fluctuations created
by the atmospheric turbulence generate a wave
dispersion independent of the wave dispersion
originated by reflections in the boundaries.

In 1937 and 1941, Dahl, Devik, Bovsheverov
and Krassilnikov (Ellison, 1951) made the sug­
gestion that measures of these fluctuations
could be a source of information on turbulence.

The mathematical formulation of this prob­
lem leads to linear partial differential equations

with random coefficients (in time and space).
The theory of random equations has been de­
veloped in recent times by Bourret (1962),
Kraichnan (1962), Bharucha-Reid (1964),
Kampe de Feriet (1965), Frisch (1968) and
others.

In 1961 Kraichnan showed the equivalence
between a linear stochastic equation and a non­
linear non-random equation; thus the solution
found directly to linear stochastic equations
derived from a linearized model of the hydro­
dynamic equations of motion can throw some
light upon the non-linear problem.

The one-dimensional wave equation with
Gaussian and Markovian coefficients can be
solved exactly (Frisch, 1968).

2. Mathematical model

Scorer reached theoretically the conclusion,
that the nature of the airflow over a rugged ter­
rain depends on the parameter

" g Ya-Y 1 o"u
l =;? T - ~ oz"

This is a stability parameter; it can in practice
be assumed, that

(2)

unfortunately until now there has been no
experimental investigation of the parameter l".

In the case of a dry atmosphere the fluctua­
tions of the pa,rameter l" can be described by a
distribution with a Gaussian probability law.
In the case of a wet atmosphere, condensation
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Thus we have

u =u+u' v =v' w =w' p =p+p'

and fl =§ +fl'

(4)

(5)I
Ya-Y, g

a(z) = -- -r --
T "RT

d1rplJ ( 1 da )
-I + - ta -t- + DIj rplj=O
dz dz

f = 2m sen ." is the coriolis parameter, ." is the
latitude, m the angular velocity of the earth
about its axis, ,,= 01>/Ov' 01> and 0v the specific
heat capacity at constant pressure and at cons­
tant volume, g the gravitational acceleration.
Rotation is included in order to generalize
although it is irrelevant to the main issue.

These equations can be linearized and using
fourier series expansions for the disturbances in
the fields of the pressure, density and velocity,
it is easy to arrive at the following equation
(see for example Musaelyan, 1964).

where rplJ is a stream function depending on z
only, and a and D 1J coefficients given by the
following relations:

w'(x, y, z)

p'(x, y, z) e'(x, y, z) u'(x, y, z)

and

u = const.. p = p(z) e= §(z)

can be simulated by a particular kind of Markov
process (Chen, 1962). We will consider only
fluctuations in space and this is equivalent to
taking atmospheric stratification into account
without establishing artificial boundaries.

Let us suppose that a uniform air current
whose velocity, pressure and density are respec­
tively

(z is the vertical coordinate), encounters a
mountain given by an equation of the form
z =C(x, y). The disturbances in the fields of the
pressure, density and velocity components
generated by the barrier in the air current
respectively by

The problem consists in determining u', v', w',
p' and e'. If there is a vertical temperature
distribution we have

Taking into account the order of magnitude
of the terms involved, (4) can be simplified and
we have the final equation

T=To-Yz

To = temperature at ground level
y = lapse rate

(6)

We will limit ourselves to the stationary case;
then, the equations of motion and heat inflow
are the following:

oU oU
u- + v- - fv=

oX oy

oV oV
u- + v- + fu=

oX By

10p

flBX

10p

e By

(k, m are the wave numbers) or

(7)

At this point many authors introduce two
hypotheses concerning the boundary condi­
tions, (7) must satisfy:

1 Bp
----g=O

e Bz

H ypothesiB 1
(3) w = 0 for z = H

Bflu Bflv Bew
- +-+-=0
Bx By Bz

u~ (~) + v~ (~) + w~ (~) = 0
Bxe Bye BZfl

H is for example the height of the tropopause.

H ypothesiB 2

In the up-stream side of the mountain the non­
disturbed flow is two-dimensional (plane X, Y)
and a function only of height. At 00
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Fig. 1. Mean weight function as fWlction of the variable y, y = z -; (ref. 6).

E{(oc -m)2} =(12 «1 = standard deviation) (9)

the velocity far away at the up-stream side of the probability law for oc is
the mountain is for x ->- - 00 U = uoo(zoo)

v =W =0
(10)

using a method developed by Samuels and
Eringen (ref. 6) this equation can be solved for
the mean Green's function.

erf = error function.
The Green's function H(z, ;) is the solution of

the equation

(11)

x [erf{V2(Y- i;)}
+ erf {V2 (Y + i;)}]

(8)

3. Solution for a random Gaussian
parameter of stability

Let us now see what happens when it is taken
as a random coefficient, eq. (7) can be written as

In other words, no waves occur up-stream.
Hypothesis number one is highly simplified

as it is known that disturbances produced by
low hills can extend to much greater heights and
may be the cause of the formation of certain
stratospheric clouds.

The only restriction upon a(z) is that all
derivatives of the coefficient are negligible with
respect to the coefficient. Let us suppose a(z)
is given by a Xt distribution

if oc = ±ai

d'H
dz'- + aH ~ 6(z -;)

under the condition that H =0 for all z <;. The
solution of this equation can be assumed to be
of the form

and E{oc} = m = mean
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Ie I II.

signal. Dichotomic refers to a two-valued
Markov process, and is an over-simplification of
the process describing the fluctuations due to
condensation, of the parameter of stability.
This process could be better described by the
following fig. 2.
The D.M.P. is fig. 3.
We can write eq. (7) in a non-dimensional form,
if we introduce the generalized Reynolds num­
ber

R(J = EKoLI (Frisch, 1968)

(12)

Fig. 2. Hopping Markov process. the points Zoo
Zl' ZI' ...• Zn are distributed according to a Poi880n
law and the heights according to a Gaussian prob­
ability law.

where H 1 is a correction term.

Y = z-E

where:

K o = characteristic wave number for free space
L = characteristic correlation length scale of tur-

bulence
e =a/m =the relative strength of fluctuations

(7) becomes:

dl'F(z) 2
--1- + KoeLls(z) 'F(z = 0)

dz

The probability of having n transitions in an
interval of length z is:

and s(z) as the random function. In Fig. 2, the
density of the Poisson law which gives the distri­
bution of the intervals on the z acis, can now be
expressed as:

If we plot

see Fig. 1, we can deduce the following conclu­
sions:

1. There is a considerable damping of the

waves with height, and for m/V2a < 1 there are
no waves at all.

2. Near the top of the mountain for m/V2~> 1
there is a considerable amplification of the mean
intensity of the basic flow.

3. In any case a steady state is reached.

(m/V2a is a dimensionless number characteriz­
ing the strength of random fluctuations of the
medium. The quantity generally used is a/m.)

with

(13)

(14)

We see then, that in the case of a dry atmos­
phere. hypothesis 1 is not needed. Waves do not
propagate up to a considerable height. There is
only a gusty wind.

4. Analysis of the solution for a discon­
tinuous Markov chain as random
paraJQeter of stability

The second case to be considered is where
a(z) can be described by a special kind of Mar­
kov process, Le. the dichotomic Markov chain,
which is also known as the random telegraph

Tellus XXIII (1971). 1
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Fig. 3. Dichotomic Markov chain. Zoo Zl' ZI ..., Zn
are distributed as in Fig. 2. according to a Poi880n
law. Dichotomic refers to a two-valued random
function with zero mean (Bourret. 1964).



between two transitions s(z) keeps a constant
value determined by a Gaussian probability
law of the form

108

1 t2

F(a) = ,r:::- exp - -22

V2na a
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(15)

+-------

J

z JZ JZ -C(Z-Zn)+ cdz, ... cdnR(z-zn)e
Zo Zl Zn-l

) -C(Z.-Zo) } ( )x ... X R(Zl - Zo e + ... + c Zo

(19)

The probability of having in the interval (0, Z)
one transition and, only one, between Z, and
Z, +dz, is:

(16)

R(z) is given by

R(z) = l dsP(s)R~(s) (20)

If P(s) is the distribution law of the values of
s(z) at a given height and if P(R) is the proba­
bility law of having n jumps in the elementary
intervals

with the n + 1 values of s in the intervals

R(z) is nothing but the mean of the "resolvents"
of the matrix A. The resolvent of A between Zo
and Z, is by definition:

R Z ,Zo

{
J

Z' JZ' JZ' }= [1]+ ()dze+ ()dz, ()dz2 + ... +
Zo 20 Zo

we have

P(R)dz, ... dzndao ... dan

= [P(so)daoe-c(z,-z')cdz , ] X

x '" [P(sn) dan e-c(z_zn)] (17)

If we restrict ourselves to the Dichotomic
Markov Process, and if we take the Laplace
transform of (19) we can analyse (19) without
direct integration

=indicates the transform of ...

p is the complex variable.
In the D.M.P. R(z) has only two forms ±Ro,

R o can be easily determined from the matrix A
with the aid of Baker's formulas.

(21) can be expressed in the form

In the Dichotomic Markov Process (Fig. 3), the
problem is simplified and the random function
can take only two values + e and - e.

Eq. (12) can be expressed in vector form in
the following way:

d
- c(z) = A[s(z)] c(z)
dz

c(Z) is the vector

{
Yl (z) A[ (0 K o) (18)
Y2 (z) ] = -KoeLs(z) 0

= Ro(p)
c (z) = = cn- c(zo)

I -c.n(p)

The characteristic equation of (22) is:

1[1] -cRo(p) I = 0

(22)

(23)

Using a method developed by Bharucha-Reid
(1964) and expression for the mean of c(z) can
be obtained

E[c(z)]

= {R(Z -zo) e-c(z-zo)

+ JZ cdz,R(z-z,)e-(Z-z')R(Z,- zo)e-C(z.-z.)
Zo

It is easy to verify that it is of the fourth order.
This equation gives us the eigensolutions of
(12). Each pole P, =u, + iv, yields a contribution
proportionnal to

which has wave number u, and damping length
V,-l. For the following values of the basic para­
meters (Queney, 1947)
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K o = 1 x lO-lmts-ll
L =3 x 10lmtB

Ii =0.35

we find using Graeffe's method and Routh­
Heurwitz stability criterion, that there is one
pair of complex roots and two unstable roots.

In general, roots are located near the imagi.
nary axis of the complex plane, so that there
is weak stability and the p088ible existence of
unstable solutions.

By unstable solutions we mean, undamped
solutions, that is waves with an amplitude that
increases with the height z. Queney and Lyra
have obtained similar solutions for the steady
motion. Usually this is explained as being a result
of not taking into account the variation of
static stability and wind with height (Eliassen &
Kleinschmidt, HI57). We see here, that this
explanation is true only when we consider
Gaussian fluctuations of the stability parameter,
but for Markovian fluctuations of the D.M.P.
kind, the reverse is true.

W can now try, to give a physical interpreta.
tion to these undamped waves.

Palm and Wurtele (ref. 9) have treated the
problem of mountain waves as an initial value
problem, and shown that the stationary motion
is independent of initial conditions. The exis­
tence of undamped waves for the steady state,
then means that actually, no stationary motion
will finally be reached outside the vicinity of the
mountain, and following Von Neumann's analy-
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sis of stability (1963), the unstable modes can
develop turbulence with appearance of vortexes.
In this case waves can propagate to a consider­
able height beyond the mountain.

5. Conclusions

We may conclude then, that the development
of mountain waves and associated turbulence
depends strongly on the humidity of the atmos·
phere. A proce88 like the one shown in Fig. 2,
diminishes the stability of the basic current and
eventually develops turbulence. In this case we
have an example of a combined barotropic iner­
tial and convective instability which can be
seen as a sort of baroclinic instability. This
result agrees with the analysis of billow mechan­
ics made by Scorer (1969).

We think we have exposed some mathemat­
ical methods developed in recent years which
can contribute something to the study of related
problems.
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rOPHbIE BOJIHbI B TYPBYJIEHTHOn ATMOC<1lEPE

Hay'laeTcfl paCnpOCTpaHeHHe BOJIH aa rOpaMH B

aTMoccflepe C cflJIYKTYHPYIO~HMH napaMeTpaMH
yCTOil:'1HBOCTH. PaCCMaTpHBaIOTCfl jJ;Ba CJIy'lafl,

rayccoBblil: H CJIy'lail: jJ;HCKpeTHblX MapKOBCKHX
~eneil:, OnHCblBaIO~He CYXYIO H BJIalt\HYIO aT­
Moccflepy, COOTBeTCTBeHHO.
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